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1 Basics

1.1 Radioactivity

Radioactivity is the emission of radiation from unstable atomic nuclei that was discovered
in 1896 by Henri Becquerel. He also proved that this radiation could be deflected by
a magnetic field and therefore must consist also of charged particles. In 1903, he was
awarded the Nobel Prize for physics together with Pierre and Marie Curie.

The radiation is emitted in the form of a positively charged alpha particle (a helium
nucleus), a beta particle (either an electron or positron), or gamma rays. Nuclear fission
is also a radioactive process, where elements become unstable after absorbing a neutron.

Common radioactive isotopes are uranium 235 and plutonium 239. They are used in
nuclear reactors and nuclear weapons. A splitting nucleus releases energy by radiation,
emission of neutrons and also smaller nuclei.

1.1.1 α-decay

α-decay is the emission of an alpha particle (4
2He nucleus). An example of this is the decay

of uranium:

238
92 U −→ 234

90 Th + 4
2 He

Alpha particles are the least penetrating of the particles produced in a radioactive decay
because of their large mass and their charge of +2e.

1.1.2 β decay

β decay is the emission of a beta particle, which can be either an electron or a positron.
A positron is the antiparticle of the +e. The β decay was explained as the decay of a
particle in the nucleus, e.g.

n −→ p + e−

In experiments it was observed that this decay breaks the law of the conservation of energy
and momentun. In 1930, Pauli postulated a new particle to save the conservation laws. He
called the new particle neutron, but it was later given the name neutrino (”little neutron”
by Fermi.

The existence of neutrinos has been experimentally proven[1] . Because of the conservation
laws of spin and charge, neutrinos have no charge and spin is 1

2 . The neutrino mass is

very small (estimates less than 3eV[2]).

A well known example of β-decay is the decay of carbon to nitrogen:
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14
6 C −→ 14

7 N + e− + ν

Beta particles are more penetrating than alpha particles.

1.1.3 γ-decay

γ-decay is the emission of high energy photons. γ-decay occurs when a nucleus is left in
an excited state after an alpha or beta decay[3] . After a β-decay of caesium to barium
(the

′
indicates an excited state of the nucleus)

137
55 Cs −→ 137

56 Ba
′

+ e− + ν

the barium undergoes γ decay to

137
56 Ba

′ −→ 137
56 Ba + γ

γ rays are highly penetrating, with sufficient energy they can penetrate a couple of cen-
timeters of lead.

1.2 Radiation counters

A radiation counter is a device to detect and measure the amount of ionizing radiation (α,
β, γ radiation). In principle, all types of radiation detectors detect the ions and electrons
produced when the ionizing radiation interacts with matter. A few different types of
radiation detectors are

• Ionization chambers

• Gas filled counter tubes

• Semiconductor detectors

• Scintillation counters

• Fog chambers

2http://www.nobel.se/physics/laureates/2002/public.html
2http://www.physik.uni-mainz.de/exakt/neutrino/en index.html
3E.W. Schpolski, Atomphysik Bd. II
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In our experiments, we will use gas-filled radiation counter tubes. This type of detectors
consist of a conducting tube with a thin wire in its center. A voltage U is applied between
the wire and the tube. The wire needs to be thin to achieve high electric field strengths
in the surrounding of the wire.
When an ionizing particle enters the tube, it will ionize a number of gas atoms, one speaks
of primary ionization.

1.2.1 Proportional counter

The proportional counter is a gas-filled tube counter. In order to detect a single particle,
a large number of ions is required. The voltage U is chosen so that, when an ionizing
particle causes ionizations, the released electrons don’t recombine with the gas ions. The
electrons are accelerated in the electric field and can acquire enough energy to again cause
ionization of gas atoms. Additionally, gas atoms can be excited by the electrons and emit
photons, which can cause photoinization. Because of these ionization processes the gas
amplifies the charge from the primary ionization by a factor of up to 105. The voltage
U is high enough so that the released electrons are quickly collected at the wire, so there
is a sudden increase of charge at the wire. This charge pulse corresponds to the series of
ionizations caused by an ionizing particle entering the tube. The amount of charge in a
pulse is proportional to the ionizing charge.
A proportional counter is works at a linear relation between the voltage and the energy
of the detected particle.

1.2.2 Geiger-Müller counter

The Geiger-Müller counter is basically a proportional counter that works at a higher volt-
age U . Geiger-Müller counters produce larger pulses than other types of detectors. The
main difference between the proportional couter and the Geiger-Müller counter is that the
number of collected electrons does not depend on the applied voltage nor on the number of
electrons produced by the initial radiation.

When a particle has been detected by the released electrons, positive ions remain. Be-
cause of their large mass these ions move slowly compared to the electrons, this is why
they form a positive charge cloud (space charge) around the wire. However the positive
ions do not increase the electric field of the positive wire but act like a thicker wire and
thus lower the field strength. This prevents further secondary ionization. The ions drift to
the negative chamber wall and are neutralised there. In doing so they can free electrons
from the chamber wall. These electrons would cause further ionizations and thus lead to
a chain reaction. There are two different approaches to prevent this chain reaction:

• The applied voltage is turned off or inverted.

• An organic quenching gas is used to prevent further ionization.

1.2.3 Characteristic curve of the counter

The count rate can be determined as a function of the applied voltage. The characteristic
curve is the plot of the count rate z and the voltage U . The curve is divided into regions
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such as the proportional area and the Geiger-Müller region.
An incoming particle creates about 104 gas ions (depending on its energy). This number
does not depend on the voltage. When there is no voltage applied, the electrons and
the ions recombine and no pulse will be measured. With increasing voltage a number of
electrons reach the wire and produce a signal. At a certain voltage all electrons reach the
wire, this is where the first plateau begins. On this plateau, the count rate is practically
independent of the voltage. The quality of the counter can be expressed in terms of the
slope of this plateau:

p =
z2 − z1

z
∗ 100

%

100V

1.2.4 Correction of the count rate

If n particles are counted during the period of time ∆t, the count rate is

z =
n

∆t

The time resolution of the counter is limited by the electronics used to register the pulses.
The time between two pulses must be at least the resolution time τA in order to register
both pulses. For the count rate this means that the period of time for the n counts was
not ∆t but ∆t− nτA instead. The actual count rate is

zw =
n

∆t− nτA

While the wire in the tube is surrounded by positive gas ions, there are no secondary
ionizations, which means that a pulse can’t be generated by an incoming particle. The
counter is insensitve. The ions drift away from the wire and beyond a certain distance,
the field strength is again high enough for secondary ionizations. The time the ions take
to reach that distance is called the dead time τD.
Because the resolution time τD can’t be measured, the dead time τD is used as an approx-
imation.

zw =
n

∆t− nτD

1.3 Energy distribution of the β radiation

A particle with a charge e moving in a magnetic field experiences the Lorentz force
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~FL = e(~v × ~B)

According to the definition of force, the change of the momentum is

F =
dp

dt
= p

v

r

For a particle moving perpendicular to the magnetic field one gets

r =
p

eB
(1)

From eq. 1 we see that if the magnetic field is constant, the radius of curvature r of the
trajectory is proportional to the momentum of the particle. If the radius of curvature
is kept constant, particles with a certain momentum can be filtered by establishing the
required magnetic field strength.
Since β particles move at velocities near the speed of light, relativistic effects must be
taken into account.

Ek = m0c
2

[√
p

m0c

2
+ 1− 1

]
=
√
p2c2 −m2

0c
4 −m0c

2

v =
c2p

Ek +m0c2

m0 ... electron mass m0 = 9, 109534 · 10−31kg
e ... elementary charge e = 1, 6021892 · 10−9C
c ... speed of light c = 2, 99792458 · 108m/s

1.4 Absorption of radiation in aluminium

The radioactive source emits β- and γ-radiation. The γ-photons can penetrate the alu-
minium and therefore don’t influence the observed absorption behaviour, they are con-
stantly counted. Along with the background radiation the γ radiation was subtracted
from the total count rate.
There are multiple effects that occur when β radiation passes matter:



Radiation counter tube 8

Figure 1: Set-up with magnetic coils as an energy filter for β radiation.

1. Elastic scattering with atom’s electrons and nuclei.

2. Ionization of atoms

3. Emission of radiation by deceleration in the electric field of the nuclei (Bremsstrahlung).

The combination of these effects is reflected in an empirical exponential law to describe
the absorption.

N(d) = N0 e
µ·d (2)
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Figure 2: Setup for measuring the absorption of β radiation.

2 Tasks

1. Measure the statistic distribution of the registered impulses.

2. Measure the characteristic curve of the counter.

3. Measure the dead time of the counter.

4. Measure the energy distribution and maximum energy of β-particles.

• Adjust the source and the counter for momentum filtering with a magnetic
field.

• Measure the count rate for β, γ and the background radiation.

• Measure the count rate for the γ and the background radiation.

• Calculate the maximum energy of the β-particles.

5. Measure the absorption of β-particles in aluminium

• Measure the count rate of the radiation (includes γ and β radiation) for different
absorber widths.

• Calculate the absorption coefficient µ.
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3 Equipment

• radiation counter tube Philips 18504)
window: Mica (0.9mm; ρ = 2− 3mg/(cm2))
cathode: inner diameter 14.4 mm, length 40 mm
material: 28 % Cr, 27 % Fe
filling gas: Ne, Ar, Halogen
dead time: approx. 100 µ s
capacity: approx. 2 pF

• Radium radioactive source: 226
88 Ra ; activity: 9 µC; emits α, β, γ - radiation

• Impulse counter Ivatsu SC-7201 VII/1493

• Digital multimeter Mastech M 3900

• Magnetic coils VII/1492

• Collimator

• Gauss-/Teslameter F.W. Bell Model 4048 VII/1494

• Oszilloscope Advance Instruments OS 250

• Aluminium disks
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4 Experiments

4.1 Statistical distribution of the registered impulses

The radioactive source and the radiation counter were arranged so that about 1000 im-
pulses per second are recorded. The impulse counter was set to count at intervals of 1s,
and for a duration of some minutes the number of registered pulses was recorded. The
numbers ranged between 945 and 1050. Most of our measurements were done at the same
voltage U , so unless otherwise indicated, the voltage U is 500V.
The underlying distribution is a Poisson distribution, which can be approximated by a
Gauss distribution for large z.

4.2 Characteristic curve of the radiation counter

The characteristic curve was measured with the same setup as used in the previous ex-
periment. The counting interval was set to 10 seconds and the count rate was measured
at various voltages with three measurements at each voltage. This was necessary because
of the statistic distribution of the count rate.
After a particle is detected, the output voltage of the counter decreases exponentially. A
RC-circuit is used to differentiate the signal voltage. The derivative of the signal on the
oscilloscope has the shape of a pulse.
The initial pulse and further, quickly changing pulses were visible on the screen. The time
resolution was set to 20µs and the dead time was estimated at voltages between 400V and
600V.

4.3 Energy distribution and maximum energy of β-particles

The equipment was set up as shown in fig.1. Two series of measurements were conducted.
In the first series, the magnetic field diverted the β-particles away from the radiation
counter. This allowed us to measure the contribution of γ-radiation and background
radition. In the second series, the magnetic field’s direction was inverted to measure both
γ and background radition, and the β-radiation.
A quantum-mechanical treatment of the decay in perturbation theory gives Fermi’s Golden
Rule for the total decay rate Wfi

Wfi =
2π

h̄2 |Hfi|2 ρ where H is the Hamiltonian and ρ the density of states. (3)

For the decay rate one gets

z(p) = dWfi ∝ p2(E0 −Ek)2 F (Z
′
, E)dp

(using the plane wave approximation). F(Z
′
,E) is the Fermi function.

F (Z
′
, E) ≈ 2πη

1− exp−2πη
with η = −Z

′
α

p/E
(4)
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From eq.1 one gets

dp

p
∝ dr

r

Thus the decay rate is

z(p) = dWfi ∝ p3(E0 −Ek)2 F (Z
′
, E)dp

For evaluation purposes one plots
√
z√

p3 F (Z
′
,E)

over Ek, which will give a straight line.

This is the so-called Kurie plot. Most of the β decays in the Uranium-Radium series
involve Lead, Bismuth, Thallium and Polonium[4]. We used Z

′
= 83 as approximation for

the different atomic numbers.
The semilogarithmic plot (fig. 6) of the energy distribution shows two peaks, so there
are contributions from two different decay processes. Due to this fact two linear fits were
necessary to distinguish the two radioactive sources and to get a reasonable value for the
maximum energy.

4.4 Absorption of radiation in Aluminium

A number of aluminium disks with widths ranging from approx. 0.05mm to 1mm where
fixed in front of the window of the radiation counter. The source was set up so that we
counted approx. 1000 impulses per second without any absorber. We conducted more
measurements at small absorber widths than at larger ones because of the higher slope
of the absorption curve in this area. Additionaly we expected to see contributions from
two different decay processes as in the energy distribution measurement, so, in contrary
to the assumptions in the basics, a biexponential decay is assumed for the absorption
function. A logarithmic plot including two straight lines is shown in fig.8 to illustrate the
two radiators.

4see appendix.
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5 Results

5.1 Statistical distribution of the registered impulses

The histogram and the Gauss fit were created with Matlab and Origin.

940 960 980 1000 1020 1040 1060
0

5

10

15

20

25

30

z [s−1]

N

Distribution of the count rate

Gaussian fit

y = A*exp(−1/2*(x−x0)2/w2)

A = 25 +− 2

w = 21 +− 1

x0 = 992 +− 1

chi2 =  1,129

Figure 3: Statistic distribution of the count rate.
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5.2 Dead time of the radiation counter

The dead time at 500V which was used in the further experiments is marked bold.
All count rates that were used for calculations are corrected for the dead time.

Table 5.2: Measurement of the dead time
Nr.: Number of the measurement
U : Applied voltage
tsd: scale divisions on the oscilloscope, scale of 20µs
τD: dead time in µs

Nr. U/V tsd/sd τD/µs

1 375 8,2 164
2 400 8,4 168
3 425 8,6 172
4 450 8,2 164
5 475 7,8 156
6 500 7,0 140
7 525 6,5 130
8 550 6,0 120
9 575 5,6 112
10 600 5,2 104
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0 500 1000 1500 2000 2500 3000 3500 4000
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Figure 4: Correction factor g at different voltages.
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5.3 Characteristic curve of the radiation counter

Table of results and linear fit for the plateau area:

Table 5.3: Characteristic curve
Nr.: Number of the measurement
U : Applied voltage
zi: measured count rate
zw: average and dead time corrected count rate
∆zw: statistical error of zw

Nr. U/V z1/s
−1 z2/s

−1 z3/s
−1 zw/s

−1 ∆zw/s
−1

1 349 3,1 5,8 6,9 5 1
2 350 14,9 13,3 17,0 15 1
3 351 59,6 82,7 50,0 65 3
4 352 111,0 101,6 92,7 103 3
5 355 348,8 561,2 355,8 448 7
6 357 568,9 518,4 529,1 583 8
7 359 791,1 798,8 827,6 908 10
8 361 1091,1 1051,4 1078,9 1264 12
9 363 1162,6 1195,4 1193,5 1419 13
10 365 1023,2 1224,7 1207,7 1373 12
11 375 1229,9 1233,3 1230,1 1487 13
12 370 1208,5 1217,6 1211,8 1461 13
13 380 1179,5 1172,9 1178,9 1409 13
14 390 1124,2 1144,2 1133,0 1348 12
15 400 1116,3 1099,5 1077,1 1297 12
16 410 1065,2 1077,4 1073,8 1261 12
17 420 1058,7 1067,1 1056,2 1246 12
18 430 1033,4 1034,2 1041,0 1212 12
19 440 1039,8 1030,4 1054,6 1219 12
20 450 1027,3 1025,0 1038,0 1204 12
21 460 1004,7 1025,2 1031,7 1191 12
22 470 1019,6 1012,6 1006,2 1180 11
23 480 1009,3 1002,1 1013,2 1174 11
24 490 997,5 992,3 987,9 1153 11
25 500 995,9 1008,7 1000,5 1165 11
26 510 987,5 984,7 993,2 1147 11
27 520 995,4 988,9 984,0 1149 11
28 530 971,6 983,4 979,7 1133 11
29 540 991,0 981,6 977,4 1140 11
30 550 971,3 977,8 975,0 1129 11
31 560 973,0 969,8 988,6 1132 11
32 570 976,8 977,1 971,3 1129 11
33 580 958,2 952,5 997,8 1122 11
34 590 971,6 964,5 967,6 1120 11
35 600 964,2 978,1 962,4 1120 11
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Figure 5: Characteristic curve of the radiation counter. Note that error bars were not
included because they were not distinguishable from the markers.
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5.4 Energy distribution and maximum energy of β-particles

5.4.1 Data for the γ and background radiation

Table 5.4.1: Measurement of the γ and background radiation
Nr.: Number of the measurement
B: Magnetic flux density
zi: count rate

Nr. B/mT z1/s
−1 z2/s

−1

1 2,82 9,23 7,89
2 10,00 8,76 6,15
3 20,40 7,94 10,13
4 30,00 8,64 8,42
5 40,00 8,53 8,56
6 50,10 8,15 8,52
7 60,10 10,22 9,09
8 70,00 9,38 8,10
9 80,00 9,01 10,63
10 90,00 9,23 8,55
11 100,00 7,53 8,85
12 110,00 8,87 9,43
13 120,00 9,34 9,56
14 130,00 8,70 8,07
15 140,00 7,97 9,45
16 150,00 8,69 9,17
17 160,00 8,64 10,22
18 170,00 8,91 9,17
19 180,00 8,03 8,50
20 190,00 7,90 8,28
21 200,00 8,61 7,36
22 210,00 9,19 9,05
23 220,00 9,27 8,85
24 230,00 7,43 8,08
25 240,00 8,93 9,29
26 250,00 7,74 8,88
27 260,00 8,66 8,13
28 270,00 9,04 7,83

The dead time-corrected, average value for the γ and background radiation zγ+N is
(8.7 ± 0.9)s−1. This value will be subtracted from the count rate for the total radiation
to determine the count rate for β particles.
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5.4.2 Data for the β, γ and background radiation

Table 5.4.2: Measurement of the β, γ and background radiation
Nr.: Number of the measurement
B: Magnetic flux density
zi: count rate
zw: dead time corrected, average count rate
∆zw: statistical error
v: velocity of the β-particles
E: kinetic energy of the β-particles

Nr. B/mT z1/s
−1 z2/s

−1 zw/s
−1 ∆zw/s

−1 v
c E/keV

1 2,82 8,71 9,04 9 1 5,6 0,8
2 10,00 8,59 7,95 8 1 19,5 10,0
3 20,40 7,78 8,62 8 1 37,6 40,5
4 30,00 10,12 8,99 10 1 51,2 84,0
5 40,00 9,81 11,11 10 1 62,3 142,0
6 50,10 11,42 12,39 12 1 70,6 210,3
7 60,10 13,48 14,40 14 1 76,7 285,3
8 70,00 16,50 16,11 16 1 81,2 364,9
9 80,00 16,39 14,60 16 1 84,7 449,2
10 90,00 15,81 16,37 16 1 87,3 536,7
11 100,00 15,81 16,87 16 1 89,3 626,5
12 110,00 16,27 17,19 17 1 90,9 718,1
13 120,00 14,83 15,65 15 1 92,2 811,2
14 130,00 14,16 15,06 15 1 93,3 905,5
15 140,00 14,37 12,60 14 1 94,1 1000,8
16 150,00 12,70 11,86 12 1 94,8 1096,8
17 160,00 10,56 12,13 11 1 95,4 1193,4
18 170,00 10,79 9,90 10 1 95,9 1290,6
19 180,00 11,25 10,40 11 1 96,3 1388,3
20 190,00 11,11 11,86 12 1 96,7 1486,4
21 200,00 10,12 12,57 11 1 97,0 1584,8
22 210,00 9,81 13,31 12 1 97,3 1683,5
23 220,00 11,83 10,76 11 1 97,5 1782,5
24 230,00 10,68 10,57 11 1 97,7 1881,7
25 240,00 10,11 11,05 11 1 97,9 1981,0
26 250,00 11,52 10,92 11 1 98,0 2080,6
27 260,00 9,91 10,93 10 1 98,2 2180,3
28 270,00 10,64 9,50 10 1 98,3 2280,1

As the energy distribution indicates, two radiating materials have been observed in the
measurement. Therefor two linear fits were performed in the Kurie plot. The maximum
energy of the β particles was extrapolated from the fit and is Emax = (3127± 133)keV ,
this corresponds to a particle moving at approx. 99% of the speed of light.
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Figure 6: Energy distribution for the β radiation.
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Figure 7: Kurie plot for the β radiation.
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5.5 Absorption of radiation in Aluminium

Table 5.5: Measurement of the absorption in Aluminium
d: Absorber width
zi: count rate
zw: average corrected count rate

Nr. d/mm z1/s
−1 z2/s

−1 z3/s
−1 zw/s

−1

1 0,000 1004,9 1025,6 1010,3 1172,5
2 0,055 677,2 673,9 660,6 731,3
3 0,055 678,0 678,8 677,3 740,4
4 0,060 673,6 666,5 661,1 727,1
5 0,060 676,0 676,8 658,3 731,1
6 0,060 669,2 669,5 685,7 736,5
7 0,110 479,9 482,6 493,0 511,8
8 0,110 526,2 517,8 524,2 555,3
9 0,115 481,3 485,7 484,6 510,3
10 0,115 481,6 489,4 475,7 508,4
11 0,120 486,8 493,6 497,5 520,4
12 0,120 491,9 491,6 508,0 525,7
13 0,120 482,1 481,9 483,0 508,6
14 0,120 514,3 516,5 524,1 550,2
15 0,180 414,9 404,2 403,4 423,5
16 0,240 330,8 331,9 323,2 335,8
17 0,300 284,3 282,2 277,2 284,1
18 0,345 241,0 243,6 241,2 241,7
19 0,405 213,0 205,3 222,2 211,4
20 0,460 182,6 188,7 187,1 182,4
21 0,580 148,7 149,6 147,1 142,9
22 0,700 122,4 120,7 125,9 116,5
23 0,820 101,4 101,3 99,9 93,6
24 0,995 74,5 77,2 75,4 67,8
25 1,470 46,8 48,2 50,1 40,0
26 2,000 34,2 33,4 33,6 25,2
27 2,510 28,0 33,2 34,1 23,2
28 3,050 26,8 25,2 24,8 17,0
29 4,110 25,2 24,1 23,7 15,7
30 5,150 20,9 20,6 22,2 12,6
31 6,180 18,5 20,7 21,5 11,6
32 7,250 19,3 20,9 19,2 11,2
33 8,320 18,6 20,9 21,0 11,5
34 8,440 19,9 21,2 19,4 11,5
35 8,560 19,9 20,9 17,7 10,9
36 8,700 21,3 18,3 19,4 11,0
37 8,820 20,9 22,0 19,8 12,3
38 8,930 20,8 17,3 20,1 10,8
39 9,040 20,2 18,5 23,2 12,0
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Figure 8: Logarithmic plot of the exponential decrease.
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6 Error analysis

6.1 Statistics

The statistic distributions are assumed to be Poisson distributions. All counts, except for
the histogram, were performed at 10s intervalls, which gives an error of

∆z =

√
z

10
≈ 1

3

√
z

6.2 Dead time of the counter

We assume that our measurement was correct up to 0.2 scale divisions, so the estimated
error is ± 4µs.

6.3 β radiation energy distribution

6.3.1 Teslameter

According to the manual, the teslameter has an error of 2% of reading.

6.3.2 Error for the radius r

We made certain, that our geometry is as accurate as possible, so we assume no measuring
method error on r = 3.39cm. However both the counter and the source are not point
objects, so particles can have trajectories with radii other than r, see fig. 9. This results in
errors when using the fixed radius r. The error on the radius can be graphically estimated
by the difference between the ideal radius and the radius with the largest deviation from
the ideal radius, as shown in fig.9.

This worst-case estimate will produce an unnecessary large error, therefore the estimation
parameters have been altered to get a more realistic estimate.

Let Ω and Ξ be two concentric circles with the radii RΩ and RΞ. RΞ is a constant,
RΩ is random.
Assume that R∗ is a value between RΞ and 0. We are interested in the probability that
RΩ is smaller than R∗. The probability density is

p (R∗) =
1

RΞ
Θ(0 ≤ R∗ ≤ RΞ)

The probabilty for RΩ being smaller than R∗ is given by the integral

P (RΩ ≤ R∗) =

∫ R∗

0
dR∗

′
p(R∗

′
) =

R∗

RΞ
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Figure 9: Different possible radii.
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This allows us to determine R∗ for P (RΩ ≤ R∗) = 1− 1
e .

We associate RΞ with the radii of the collimator hole resp. the counter window, RΩ

with the point where the trajectory of a particle intersects the collimator hole resp. the
counter window. We calculate the radius of the circular areas through which 63% of
the particles travel and make a graphical estimate according to fig.9, using the obtained
dimensions for 63% of the particles. These are:

2a = 0, 63 · 9mm = 5, 7mm

2b = 0, 63 · 5mm = 3, 2mm

The graphical estimate gives gives r = (3, 4 ± 0, 6) cm.

∆r

r
≈ 0, 18

6.3.3 Particle energy

The errors for B and r allow us to specify errors for the velocity and the energy of the
particles, which are shown in fig.6. Compared to the error on r, the error on B is small
and will be neglected.

∆E = |∂E
∂r
|∆r

∂E

∂r
=

p2

Er

The error for the maximum energy was calculated from the error of the straight line at
the intersection with the x-axis given by Matlab.

∆E =
∆f(z)

k

where f(z) is
√
z√

p3 F (Z
′
,E)

and k is the slope of the straight line.

6.4 Absorption of radiation in aluminium

The error on the absorption coefficients is given by the fit routine of Origin and was used
as specified by Origin. For subtracting the background radiation, we took the value from
the energy distribution measurement. However in this measurement, the distance between
the two magnetic cores was ≈8mm, which is about 10% smaller than the diameter of the
counter window. Therefor the actual background radiation is presumably slightly larger,
but we consider this neglectable.
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7 Summary

7.1 Statistic distribution of the count rate

A Poisson distribution was observed which was approximated by a Gauss distribution, see
fig.4. This is reasonable because the approximation is already good at values of one order
of magnitude lower than the measured values[5] .

7.2 Characteristic curve of the radiation counter

The characteristic curve is shown in fig.5. A linear fit was performed to calculate the slope
of the plateau, which is approximately

k = −11
%

100V

7.3 Dead time of the radiation counter

The dead times for various voltages are shown in table 5.2. For our measurements we
operated the radiation counter at 500 V with a dead time of (140 ± 4)µs.

7.4 Energy distribution and maximum energy of β particles

The energy distribution is shown in fig.6 and as Kurie plot in fig.7. The maximum energy
of the β particles was Emax = (3127± 133)keV , which is the energy of a particle moving
at ≈ 99% of the speed of light.

7.5 Absorption of radiation in aluminium

A second order exponential decrease fit was done to calculate the absorption coefficients
for the two dominant radiating materials. The coefficients are

c1 = (16 ± 1)mm−1

c2 = (2, 5 ± 0, 2)mm−1

The second order exponential decrease is shown in fig.8.

5see appendix.
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8 Appendix

8.1 Radium decay series

Figure 10: Decay series for the three Radium isotopes.
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8.2 Gauss and Poisson distribution

Figure 11: Comparison of Gauss and Poisson distribution.

Gauss distribution with σ ≈
√
N :

P (X|N) =
1√

2πN
e−

(x−N)2

2N

Poisson distribution:

P (X|N) =
Nx

x!
e−N

For large N, the factorial was approximated with the Stirling formula

x! ≈ xx+ 1
2 e−x

√
2π


